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Abstract The aim of the paper is to show how to explicitly express the function of
sectional curvature with the first and second derivatives of the problem’s functions in the
case of submanifolds determined by equality constraints in the n-dimensional Euclidean
space endowed with the induced Riemannian metric, which is followed by the formula-
tion of the minimization problem of sectional curvature at an arbitrary point of the given
submanifold as a global minimization one on a Stiefel manifold. Based on the results, the
sectional curvatures of Stiefel manifolds are analysed and the maximal and minimal sectional
curvatures on an ellipsoid are determined.
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1 Introduction

In differential geometry, one of the main tools for studying the structure of the Riemannian
manifolds seems to be the sectional curvature [10]. A famous result is that the fundamental
Euclidean, Riemannian elliptic and Bolyai-Lobachevsky hyperbolic manifolds are character-
ized by zero, positive and negative constant sectional curvature, respectively. The definition
of the sectional curvature is based on the fourth-order Riemannian curvature tensor field
and the Riemannian metric (e.g., [12]), so concrete calculations should need extremely diffi-
cult procedures. Besides the sectional curvature having interesting geometric interpretations,
its importance comes from the fact that the knowledge of sectional curvatures determines
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the Riemannian curvature tensor field completely. For classifying the constraints of smooth
nonlinear optimization problems, a possibility is to use the sectional curvatures.

In 1935, Stiefel introduced a differentiable manifold consisting of all the orthonormal
vector systems x1, x2, . . . , xk ∈ Rn , where Rn is the n-dimensional Euclidean space and
k ≤ n. In the paper, it will be shown that the computation of the minimal sectional curvature
in the case of submanifolds determined by equality constraints in the Euclidean space Rn

endowed with the induced Riemannian metric leads to solving minimization problems on
Stiefel manifolds.

Let

M[h] = {x ∈ Rn | h j (x) = 0, j = 1, . . . , n − k}, (1)

where k > 0, h j ∈ C2, j = 1, . . . , n − k, and 0 is a regular value of the map h, i.e., the
(n − k) × n Jacobian matrix Jh(x) of h at x is of full rank (n − k) for all x ∈ M[h]. Under
these assumptions, the set M[h] is a k-dimensional submanifold of C2 in Rn (e.g., [4]) which
can be endowed with a Riemannian metric G. In optimization theory, the Riemannian metric
is often induced by the Euclidean metric of Rn [7].

The aim of the paper is to show how to explicitly express the function of sectional cur-
vature with the first and second derivatives of the problem’s functions on the submanifold
M[h] endowed with the induced Riemannian metric, and how to formulate the minimization
problems of sectional curvatures related to M[h]. At an arbitrary point x0 ∈ M[h], this
minimization problem leads to a global minimization one on Stiefel manifolds [11], which
seems to be an interesting new branch of nonlinear optimization [3,9]. After obtaining the
optimality conditions for the minimization problems of sectional curvatures, the sectional
curvatures of Stiefel manifolds are analysed and the maximal and minimal sectional curva-
tures on an ellipsoid are determined. These curvatures are proportional with the condition
number of the given matrix. The paper is ended with some open problems.

2 Sectional curvatures on Riemannian manifolds

Let M be an n-dimensional differentiable manifold, and let the tangent space of M at an
arbitrary point m ∈ M be denoted by T M(m). The tangent space T M(m) is a linear space
and has the same dimension as M . Because we restrict ourselves to real manifolds, T M(m)

is isomorphic to Rn . If M is endowed with a Riemannian metric G, then M is a Riemannian
manifold denoted by (M, G). The inner product of two tangent vectors v1, v2 ∈ T M(m) is
equal to

〈v1, v2〉m = G(m, v1, v2), (2)

where G(m) is the Riemannian metric at the point m. The norm of a tangent vector v ∈
T M(m) is defined by

‖ v ‖m = √〈v, v〉m . (3)

Definition 1 [12, p.8] Let (M, G) be a Riemannian manifold with the Riemannian curvature
tensor field R. Let m be a point in M and V a two-dimensional vector subspace of the tangent
space T M(m). Suppose that {v1, v2} is a basis of V . The real number

K (m, V ) = R(v1, v2, v1, v2)

G(m, v1, v1)G(m, v2, v2) − G(m, v1, v2)2 (4)

is said to be the sectional curvature of M at m along the section V .
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It is an important property that the sectional curvature K (m, V ) does not depend on the
particular choice of the basis of V . Oprea [6] studied the minimization of sectional curvatures
(4) on Riemannian manifolds, and gave a first-order characterization of critical sections.

A beautiful theorem of global differential geometry is the sphere theorem which states as
follows:

Theorem 1 [2] Let (M, G) be a compact simply connected Riemannian manifold whose sec-
tional curvatures K (m, V ), m ∈ M, for all two-dimensional vector subspaces of the tangent
space T M(m), satisfy

0 < α Kmax < K (m, V ) ≤ Kmax, m ∈ M, α = 1/4. (5)

Then, (M, G) is homeomorphic to a sphere.

A Riemannian manifold (M, G) has a constant sectional curvature K0 if for all m ∈ M
and all two-dimensional vector subspaces V of T M(m), we have K (m, V ) = K0. If M is
two-dimensional, this implies that K (m) = K0 for all m ∈ M . It is not difficult to verify that
if a Riemannian metric is multiplied by a positive constant c, then the sectional curvatures are
multiplied by 1/c. Two examples for Riemannian manifolds with constant sectional curvature
K0: the Euclidean space Rn with K0 = 0 and the unit sphere Sn ⊂ Rn+1 with K0 = 1.

A point m in an n-dimensional Riemannian manifold (M, G) is called isotropic if the
sectional curvatures K (m, V ) for all two-dimensional vector subspaces V of T M(m) have
the same value K0.

Schur theorem (1886) If M is a connected Riemannian manifold of dimension n ≥ 3
and all points are isotropic, then M has a constant sectional curvature.

It is known that the Gaussian curvature of a surface in the three-dimensional Euclidean
space is the sectional curvature. For n = 2, the statement does not apply: there are surfaces
with nonconstant Gaussian curvature. The sphere theorem can be considered a generalization
of Schur theorem in which the sectional curvatures belong to the same interval at every point.

Hilbert theorem (1901) A complete surface M with constant curvature K0 = −1 cannot
be immersed in R3.

3 Sectional curvatures on Euclidean submanifolds with the induced Riemannian
metric

The problem to be solved is to determine the minimal sectional curvature of the submani-
fold M[h] endowed with the induced Riemannian metric at an arbitrary point x0 ∈ M[h].
First, the function of sectional curvatures is explicitly expressed with the first and second
derivatives of the problem’s functions.

Theorem 2 Let x0 ∈ M[h] be an arbitrary point, n1, . . . , nn−k an orthonormal basis with
respect to the Euclidean metric of the orthogonal subspace of the tangent space T M[h](x0),

and w1, w2 ∈ Rn an orthonormal pair of vectors with respect to the Euclidean metric in
T M[h](x0). Then, the sectional curvature of M[h] at the point x0 along the section {w1, w2}
is equal to
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KM[h](x0, w1, w2)

=
n−k∑

i=1

⎡

⎣

⎛

⎝
n−k∑

j=1

µi j (x0)wT
1 Hxh j (x0)w1

⎞

⎠

⎛

⎝
n−k∑

j=1

µi j (x0)wT
2 Hxh j (x0)w2

⎞

⎠

−
⎛

⎝
n−k∑

j=1

µi j (x0)wT
1 Hxh j (x0)w2

⎞

⎠

2
⎤

⎥
⎦ ,

(6)

where

µT
i (x0) = nT

i Jh(x0)
T

[
Jh(x0)Jh(x0)

T
]−1

, i = 1, . . . , n − k.

Proof Let M1 be an n-dimensional Riemannian manifold with metric G1 and M a k-dimen-
sional submanifold with n − k > 0. An immersion of M into M1 is a C2 map F : M → M1

such that the derivative d F (J F in a coordinate representation) of F is one-to-one on every
tangent space T M(m), m ∈ M . The induced Riemannian metric or the first fundamental
form of the immersion is given by 〈d F, d F〉 (= J FT G1 J F in a coordinate representation)
which makes M a Riemannian manifold.

Let KM (m, v1, v2) and KM1(m, v1, v2) denote the sectional curvatures of the manifolds
M and M1 at any point m ∈ M and for every pair of tangents v1, v2 ∈ T M(m), respectively.
Let n1, . . . , nn−k be an orthonormal basis of the orthogonal subspace of the tangent space
T M(m) denoted by T M⊥(m) and v1, v2 an orthonormal pair of vectors with respect to the
induced Riemannian metric in T M(m). Then, the sectional curvature of M at the point m
along the section {v1, v2} is equal to

KM (m, v1, v2) = KM1(m, v1, v2) +
n−k∑

i=1

(
Bni (v1, v1)Bni (v2, v2) − Bni (v1, v2)

2
)
, (7)

where Bni , i = 1, . . . , n − k, is the second fundamental form in the direction ni , i =
1, . . . , n − k, respectively. Thus, the induced sectional curvature on M is equal to the sec-
tional curvature on M1 plus the sum of the “squares of areas” with respect to the second
fundamental forms (see, e.g., [1, p. 193]).

Let us consider the manifold M[h] and assume that the Riemannian metric is induced by
the Euclidean metric of Rn . Consider an arbitrary coordinate representation of the manifold
M[h] in any neighbourhood given by the smooth vector function x(u), u ∈ U ⊆ Rk , x ∈ Rn ,
where U is an open set. The second fundamental form of the manifold M immersed in Rn at
u0 ∈ U in the direction of a normal unit vector n is the quadratic form vT Bn(u0)v, v ∈ Rk ,
where the elements of the k × k matrix Bn(u0), u0 ∈ U , are

bi j (u0) =
(

∂2x(u0)

∂ui ∂u j

)T

n, i, j = 1, . . . , k, u0 ∈ U ⊆ Rk,

(e.g., [7, p. 31]). The formula of the second fundamental form implies an operation between
vectors and three-dimensional hypermatrices. Let

Hx (u0) =
⎛

⎜
⎝

H x1 (u0)
...

H xn (u0)

⎞

⎟
⎠ , u0 ∈ U ⊆ Rk,

123



J Glob Optim (2008) 40:375–388 379

then, nT Hx(u0) = Hx(u0)n =
n∑

l=1

nl H xl(u0).

By formula (9.3.6) on p. 150 in [7], the second covariant derivatives

D2
(
nT

i x(u)
) = Jx(u)T Hx

(
nT

i x(u)
)
Jx(u) + ∇x

(
nT

i x(u)
)
Hx(u)

−∇x
(
nT

i x(u)
)
Jx(u)�(u), u ∈ U ⊆ Rk, i = 1, . . . , n − k,

(8)

where ni , i = 1, . . . , n − k, are constant orthonormal vectors of T M[h]⊥(x0), Jx(u) is
the Jacobian matrix, the matrix multiplication Jx(u)�(u), u ∈ U ⊆ Rk , is defined by the
rule related to the multiplication of a row vector and a three-dimensional matrix, applied
consecutively to every row vector of Jx(u).

From (8), we obtain that

D2(nT
i x(u0)

) = Bni (u0), i = 1, . . . , n − k, u0 ∈ U ⊆ Rk . (9)

By Theorem 9.5.3 on p. 159 in [7], if M[h] is given by (1), then the second covariant deriva-
tives of the functions nT

i x, x ∈ M[h], i = 1, . . . , n − k, can be formulated in an equivalent
form of

D2(nT
i x

) =
⎛

⎝
n−k∑

j=1

µi j (x)Hxh j (x)

⎞

⎠

|T M

, x ∈ M[h], i = 1, . . . , n − k, (10)

where

µT
i (x) = nT

i Jh(x)T
[

Jh(x)Jh(x)T
]−1

, x ∈ M[h] i = 1, . . . , n − k, (11)

and the tangent vectors w ∈ Rn of T M[h](x0) are w = Jx(u0)v, v ∈ Rk . Thus, in the case
of an orthonormal pair of tangent vectors with respect to the induced Riemannian metric
v1, v2 ∈ Rk , we have that w1 = Jx(u0)v1 and w2 = Jx(u0)v2 are orthonormal with respect
to the Euclidean metric.

By substituting relations (10) for (7) and taking the equality KRn (x0, v1, v2) = 0 into
account, the statement is proved. �

Example 1 Consider the sphere in R3 given by

MS = M[h] =
{

x ∈ R3 | h(x) = 1

2

(
x2

1 + x2
2 + x2

3

) − 1

2
= 0

}
. (12)

By differentiating the function h in (12), we have that

∇h(x) = (x1, x2, x3), ‖ ∇h(x) ‖ = ∇h(x)T ∇h(x) = 1, x ∈ MS,

Hh(x) = I3 =
⎛

⎝
1

1
1

⎞

⎠ , x ∈ MS .

Thus, the unique unity normal vectors are ∇h(x), x ∈ MS , and µ(x) = 1, x ∈ MS .
Let w1, w2 be an orthonormal pair of tangent vectors with respect to the Euclidean metric

at an arbitrary point of MS , then by Theorem 2,

KMS (x, w1, w2) = 1, x ∈ MS, (13)

which proves that MS has a constant sectional curvature.
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In order to determine the minimal sectional curvature of the manifold M[h] with the
induced Riemannian metric at an arbitrary given point x0 ∈ M[h], the following nonlinear
global optimization problem has to be solved:

min KM[h](x0, w1, w2)

wT
1 w1 = 1, wT

2 w2 = 1, wT
1 w2 = 0, w1, w2 ∈ Rn .

(14)

We remark that the section {w1, w2} corresponds to the section

{
v1 = Jh(x0)

T [Jh(x0)Jh(x0)
T ]−1 w1 ∈ Rk,

v2 = Jh(x0)
T [Jh(x0)Jh(x0)

T ]−1 w2 ∈ Rk
}

at the tangent space T M[h](x0).

4 Minimization on Stiefel manifolds

Consider the following optimization problem:

min f (w1, w2, . . . , . . . , wk)

wT
i w j = δi j , 1 ≤ i, j ≤ k ≤ n,

wi ∈ Rn, i = 1, . . . , k, n ≥ 2,

(15)

where f : Rkn → R is a twice continuously differentiable function and δi j is the Kronecker’s
delta. Since the feasible set is compact and the objective function is continuous, optimiza-
tion problem (15) has, at least, a global minimum point and a global maximum point, thus
several stationary points. The feasible set of problem (15), denoted by Mn,k , consists of all
the orthonormal vector systems w1, w2, . . . , wk ∈ Rn, k ≤ n, and can be written as

wT
i wi = 1, i = 1, . . . , k, (16)

wT
i w j = 0, i, j = 1, . . . , k, i �= j, (17)

wi ∈ Rn, i = 1, . . . , k, n ≥ 2.

Equalities (16), (17), and equalities (17) determine a compact and a noncompact set, respec-
tively. These constraints seem to be useful to describe independent groups of variables in the
phase of modelling real-life problems.

If k = 1 and f (w) = 1

2
wT Ax, then problem (15) is equal to the classical eigenvalue

problem

min
1

2
wT Aw

||w||2 = 1, w ∈ Rn .
(18)

In order to study the geometric structure of the feasible set, a new representation of the
same was suggested in [8,9] providing a decomposition of the feasible set as well. Let us
introduce the following notations:

123



J Glob Optim (2008) 40:375–388 381

w =
(

wT
1 , . . . , wT

k

)T

∈ Rkn, J = {(i, j) | i, j = 1, . . . , k, i < j},

Cl =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . In . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, l = 1, . . . , k,

Ci j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 0 . . . 0 . . .
...

. . .
...

. . .
...

...

0 . . . 0 . . . In . . .
...

. . .
...

. . .
...

...

0 . . . In . . . 0 . . .

0 . . . 0 . . . 0 . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (i, j) ∈ J,

where Cl , l = 1, . . . , k, are kn × kn blockdiagonal matrices, Ci j kn × kn block matrices, In

is the identity matrix in Rn, Cl and Ci j contain In in the lth diagonal block and in the (i, j)
as well as ( j, i) blocks, respectively. The kn × kn symmetric matrices Ci j are defined for all
the pairs of different indices belonging to J , given by the k (k − 1) /2 combinations of the
indices 1, . . . , k.

It follows that in the case of a compact Stiefel manifold, the feasible set Mn,k given by
(16) and (17) is equivalent to

hl (w) = 1

2
wT Clw − 1

2
= 0, l = 1, . . . , k,

hi j (w) = 1

2
wT Ci j w = 0, (i, j) ∈ J,

w ∈ Rkn, n ≥ 2.

(19)

In the definition of the index set J , the restriction i < j ensures that only one of the identical
equalities hi j (w) = 0 and h ji (w) = 0, i, j = 1, . . . , k, i �= j appears in (19).

Thus, the feasible set Mn,k and its tangent space at the point w ∈ Mn,k can be described
by

Mn,k = {
w ∈ Rkn | hl (w) = 0, l = 1, . . . , k; hi j (w) = 0, (i, j) ∈ J

}
, (20)

T Mn,k (w) =
{

v ∈ Rkn | ∇hl (w) v = 0, l = 1, . . . , k; ∇hi j (w) v = 0, (i, j) ∈ J
}

=
{

v ∈ Rkn | wT
l vl = 0, l = 1, . . . , k; wT

i v j + wT
j vi = 0, (i, j) ∈ J

}
,

w ∈ Mn,k, (21)

where the symbol ∇ denotes the gradient vector of a function which is a row vector.
The following statements characterizing the structure of the feasible set can be found with

a simple proof in [9].

Theorem 3 The set Mn,k is a compact C∞ differentiable manifold (Stiefel manifold) with
dimension kn − k(k+1)

2 for every pair of positive integers (k, n) satisfying k ≤ n. The Stie-
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fel manifolds are connected if k < n. In the cases k = n, the Stiefel manifolds are of two
components.

Now, following [9], the first-order and second-order, necessary and sufficient, local and
global optimality conditions of problem (15) are stated.

By using the equality representations of the compact Stiefel manifolds Mn,k , problem (15)
is equivalent to

min f(w)

hl (w) = 1

2
wT Clw − 1

2
= 0, l = 1, . . . , k,

hi j (w) = 1

2
wT Ci j w = 0, (i, j) ∈ J,

w ∈ Rkn, n ≥ 2.

(22)

Problem (22) is one of the basic equality constrained problems in smooth optimization stud-
ied in most of the classical literature (e.g., [5]). The difficulty in the solution of problems (22)
originated mostly from the intersections of the quadratic equality constraints, which results
in the fact that the feasible region is a nonconvex and possibly disconnected subset of the
hypersphere wT w = k in Rkn , and from the nonconvexity of the objective function. It is
emphasized that by Theorem 3, the feasible set of problem (15) is connected if k < n, and it
has two connected components if n = k.

Before stating the optimality conditions, the definition of geodesic convex sets is recalled
where the geodesic is used in the classical meaning. If M is a Riemannian C2 manifold, then
a set C ⊆ M is geodesic convex if any two points of C are joined by a geodesic belonging to
C, moreover, a singleton is geodesic convex. Let us introduce the symmetric matrix function

S(w)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(∇ f (w)C1w)In
1

2
(∇ f (w)C12w)In . . .

1

2
(∇ f (w)C1kw)In

1

2
(∇ f (w)C12w)In (∇ f (x)C2w)In . . .

1

2
(∇ f (w)C2kw)In

...
...

. . .
...

1

2
(∇ f (w)C1kw)In

1

2
(∇ f (w)C2kw)In . . . (∇ f (w)Ckw)In

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

w = (
wT

1 , . . . , wT
k

)T ∈ Mn,k .

(23)

Theorem 4 [9] If the point w0 ∈ Mn,k is a (strict) local minimum of problem (22), then

∇ f(w0) = wT
0 S (w0) , and (24)

(
H f(w0) − S (w0)

)

|T Mn,k (w0)

(25)

is a positive semidefinite (definite) matrix where the symbol |T Mn,k (w0) denotes the restric-
tion to the tangent space at the point w0 and H the Hessian matrix of a function.
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If C ⊆ Mn,k is an open geodesic convex set, and there exists a point w0 ∈ C such that

∇ f(w0) = wT
0 S (w0) , and

(
H f(w) − S (w)

)

|T Mn,k (w)

, w ∈ C,
(26)

are positive semidefinite (definite) matrices, then the point w0 is a (strict) global minimum
of the function f on the set C.

5 Sectional curvatures on Stiefel manifolds with the induced Riemannian metric

The aim of this part is to determine the sectional curvatures of Stiefel manifolds endowed
with the induced Riemannian metric.

Theorem 5 Let x̃ ∈ Mn,k be an arbitrary point,

Cl x̃, l = 1, . . . , k,

1√
2

Ci j x̃, (i, j) ∈ J,
(27)

an orthonormal basis with respect to the Euclidean metric of the orthogonal subspace of
the tangent space T Mn,k(x̃), and w̃1, w̃2 an orthonormal pair of vectors with respect to the
Euclidean metric in T Mn,k(x̃). Then, the sectional curvature of Mn,k at the point x̃ along
the section {w̃1, w̃2} is equal to

KMn,k (x̃, w̃1, w̃2) =
k∑

l=1

(
w2

1lw
2
2l − (wT

1lw2l)
2
)

+ 1√
2

∑

(i, j)∈J

((
2wT

1i w1 j
)(

2wT
2i w2 j

)

−(
wT

1i w2 j + wT
1 j w2i

)2
)
. (28)

Proof In the case of Stiefel manifolds Mn,k , due to formulae (19), (21), let the orthonormal
basis of T M⊥

n,k(x), x ∈ Mn,k, be given by the gradients of the equality constraints

Clx, l = 1, . . . , k,
1√
2

Ci j x, (i, j) ∈ J.

By (11) and the orthonormality of the basis, the vector functions

µl(x), l = 1, . . . , k, x ∈ Mn,k,

µ(i, j)(x), (i, j) ∈ J, x ∈ Mn,k,

are of the constant unity vectors.
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Consider an orthonormal pair of tangent vectors w̃1, w̃2 ∈ T Mn,k(x̃) at an arbitrary point
x̃ ∈ Mn,k . By Theorem 2,

KMn,k (x̃, w̃1, w̃2)

=
k∑

i=1

⎡

⎣

(
k∑

l=1

µil(x̃)w̃T
1 Clw̃1

) (
k∑

l=1

µil(x̃)w̃T
2 Clw̃2

)

−
(

k∑

l=1

µil(x̃)w̃T
1 Clw̃2

)2⎤

⎦

+
k∑

l=1

⎡

⎣

⎛

⎝
∑

(i, j)∈J

µli j (x̃)w̃T
1 Ci j w̃1

⎞

⎠

⎛

⎝
∑

(i, j)∈J

µli j (x̃)w̃T
2 Ci j w̃2

⎞

⎠

−
⎛

⎝
∑

(i, j)∈J

µli j (x̃)w̃T
1 Ci j w̃2

⎞

⎠

2
⎤

⎥
⎦

=
k∑

l=1

(
(w̃T

1 Clw̃1)(w̃T
2 Clw̃2) − (w̃T

1 Clw̃2)
2
)

+ 1√
2

∑

(i, j)∈J

(
(w̃T

1 Ci j w̃1)(w̃T
2 Ci j w̃2) − (w̃T

1 Ci j w̃2)
2
)

=
k∑

l=1

(
w2

1lw
2
2l − (wT

1lw2l)
2
)

+ 1√
2

∑

(i, j)∈J

(
(2wT

1i w1 j )(2wT
2i w2 j ) − (wT

1i w2 j + wT
1 j w2i )

2
)
,

which is the statement. �

Example 2 Let n = 3, k = 2, then the dimension of the Stiefel manifold M3,2 is equal to

kn − k(k + 1)

2
= 6 − 2 · 3

2
= 3.

Let S2 be the hypersphere in R3, then the restrictions for the tangent vectors w̃ =
(wT

1 , wT
2 )T ∈ T M3,2(x̃) of the Stiefel manifold M3,2 at the point

x̃ = (xT
1 , xT

2 )T , x1, x2 ∈ S2,

are as follows:

xT
l wl = 0, l = 1, 2,

xT
1 w2 + xT

2 w1 = 0.

In order to determine the sectional curvatures of the Stiefel manifolds M3,2, the correspond-
ing orthonormal pairs of vectors, representing some two-dimensional subspaces of the given
tangent space, have to be given.

At the point x̃, the tangent plane T M3,2(x̃) can be spanned by the orthonormal vectors

w̃1 =
(

− 1√
2

xT
2 ,

1√
2

xT
1

)T

= 1√
2

(−xT
2 , xT

1

)T
,

w̃2 =
(

1√
2

xT
3 ,

1√
2

xT
3

)T

= 1√
2

(
xT

3 , xT
3

)T
,

w̃3 =
(

1√
2

xT
3 ,− 1√

2
xT

3

)T

= 1√
2

(
xT

3 ,−xT
3

)T
,

where xT
1 x3 = 0, xT

2 x3 = 0 and xT
3 x3 = 1.
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By using formula (28) and the fact that the sectional curvature does not depend on the
choice of the vectors belonging to a given two-dimensional subspace of the tangent space,
we have that

K (x̃, w̃1, w̃2) = w2
11w2

21 −
(

wT
11w21

)2 + w2
12w2

22 −
(

wT
12w22

)2

+ 1√
2

(
(2wT

11w12)(2wT
21w22)

−(wT
11w22 + wT

12w21)
2
)

= 1

2
> 0,

K (x̃, w̃2, w̃3) = w2
21w2

31 −
(

wT
21w31

)2 + w2
22w2

32 −
(

wT
22w32

)2

+ 1√
2

(
(2wT

21w22)(2wT
31w32)

−(wT
21w32 + wT

22w31)
2
)

= 1√
2

(
2

(
1

2

)
· 2

(
−1

2

)
−

(
−1

2
+ 1

2

))
= − 1√

2
< 0.

K (x̃, w̃1, w̃3) = w2
11w2

31 −
(

wT
11w31

)2 + w2
12w2

32 −
(

wT
12w32

)2

+ 1√
2

(
(2wT

11w12)(2wT
31w32)

−(wT
11w32 + wT

12w31)
2
)

= 1

2
> 0.

6 Minimization of sectional curvatures on Euclidean submanifolds with the induced
Riemannian metric

In order to determine the minimal sectional curvature of the manifold M[h] with the induced
Riemannian metric at an arbitrary given point x0 ∈ M[h], the following nonlinear global
optimization problem has to be solved:

min KM[h](x0, w1, w2)

wT
1 w1 = 1, wT

2 w2 = 1, wT
1 w2 = 0, w1, w2 ∈ Rn,

(29)

which is equivalent to

min KM[h](x0, w)

w = (wT
1 , wT

2 )T ∈ Mk,2,
(30)

By (23),

S(w) =

⎛

⎜
⎜
⎜
⎜
⎝

∇w KM[h](x0, w)

(
w1

0

)
In

1

2
∇w KM[h](x0, w)

(
w2

w1

)
In

1

2
∇w KM[h](x0, w)

(
w2

w1

)
In ∇w KM[h](x0, w)

(
0

w2

)
In

⎞

⎟
⎟
⎟
⎟
⎠

,

w ∈ (
wT

1 , wT
2

)T ∈ Mk,2.

(31)
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and by Theorem 4, we have the first-order and second-order optimality conditions of problem
(31).

Theorem 6 If the point w̃ ∈ Mk,2 is a (strict) local minimum of problem (30), then

∇w KM[h](x0, w̃) = w̃T S(w̃), (32)

and
(

Hw KM[h](x0, w̃) − S(w̃)
)

|T Mk,2(w̃)
, (33)

is a positive semidefinite (definite) matrix.
If C ⊆ Mk,2 is an open geodesic convex set, and there exists a point w̃ ∈ C such that (32)

holds, and
(
Hw KM[h](x0, w) − S(w)

)
|T Mk,2(w)

, w ∈ C, (34)

are positive semidefinite (definite) matrices, then the point w̃ is a (strict) global minimum.

Based on Theorems 2 and 6, let us determine the maximal and minimal sectional curvatures
on an ellipsoid.

Theorem 7 Consider the feasible set

M[h] =
{

x ∈ Rn | h(x) = 1

2
xT Ax − 1

2
c = 0

}
,

where A is a symmetric and positive definite n × n matrix and c �= 0. Then,

max KM[h](w1, w2) = λ1λ2

λnc

and

min KM[h](w1, w2) = λnλn−1

λ1c
,

where λ1, λ2 and λn−1, λn are the two largest and smallest eigenvalues of the matrix A,
respectively.

Proof By differentiating the function h, we have that

∇h(x) = xT A, ‖ ∇h(x) ‖= (xT AAx)1/2, Hh(x) = A, x ∈ M[h],

and since the unique normal vectors are
∇h(x)

‖ ∇h(x) ‖ , x ∈ M[h],

µ(x) = 1

‖ ∇h(x) ‖ , x ∈ M[h].

Let w1 and w2 be an orthonormal pair of tangent vectors with respect to the Euclidean
metric at an arbitrary point x0 of M[h], then by Theorem 2,

KM[h](x0, w1, w2) = 1

‖ ∇h(x0) ‖2

(
(wT

1 Aw1)(wT
2 Aw2) − (wT

1 Aw2)
2
)
. (35)
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Thus,

∇w KM[h](x0, w1, w2) = 2

‖ ∇h(x0) ‖2

(
wT

1 A(wT
2 Aw2) − wT

2 A(wT
1 Aw2),

wT
2 A(wT

1 Aw1)−wT
1 A(wT

1 Aw2)
)
,

w ∈ Mn−1,2, (36)

S(w) =

⎛

⎜
⎜
⎜
⎝

∇w KM[h](x0, w)

(
w1

0

)
In

1

2
∇w KM[h](x0, w)

(
w2

w1

)
In

1

2
∇w KM[h](x0, w)

(
w2

w1

)
In ∇w KM[h](x0, w)

(
0

w2

)
In

⎞

⎟
⎟
⎟
⎠

= 2

‖ ∇h(x0) ‖2
⎛

⎝

(
(wT

1 Aw1)(wT
2 Aw2) − (wT

1 Aw2)
2
)

In 0

0
(
(wT

1 Aw1)(wT
2 Aw2) − (wT

1 Aw2)
2
)

In

⎞

⎠ ,

w ∈ Mn−1,2. (37)

The first-order optimality conditions of the minimization or maximization of sectional
curvatures on M[h] with the induced Riemannian metric are as follows:

wT
1 A(wT

2 Aw2) − wT
2 A(wT

1 Aw2) =
(
(wT

1 Aw1)(wT
2 Aw2) − (wT

1 Aw2)
2
)

wT
1 , (38)

wT
2 A(wT

1 Aw1) − wT
1 A(wT

1 Aw2) =
(
(wT

1 Aw1)(wT
2 Aw2) − (wT

1 Aw2)
2
)

wT
2 ,

w ∈ Mn−1,2. (39)

The pairs of eigenvectors of A fulfil equations (38) and (39), thus, they are of stationary
points of the sectional curvature optimization problem. A consequence is that if w1 and w2

are the orthonormal eigenvectors related to the two largest eigenvalues λ1 and λ2 or the two

smallest eigenvalues λn and λn−1, then we obtain the maximum value
1

‖ ∇h(x0) ‖2 λ1λ2 or

the minimum value
1

‖ ∇h(x0) ‖2 λnλn−1 of the sectional curvatures at the point x0.

Since max
x∈M[h] ‖ ∇h(x) ‖2 and min

x∈M[h] ‖ ∇h(x) ‖2 are λ1c and λnc, respectively, we have

proved the statement. �

We remark that the maximal and minimal sectional curvatures on M[h] with the induced
Riemannian metric are proportional with the condition number of the matrix A.

Let λn = 0.4, λn−1 = 0.7, . . . , λ2 = 1.7, λ1 = 2 be the eigenvalues of a matrix A.
Then, the inequality of the sphere theorem fulfils, thus, by the sphere theorem, the ellipsoid
M[h] is homeomorphic to a sphere.

7 Concluding remarks

In the paper, the function of sectional curvature is explicitly expressed with the first and
second derivatives of the problem’s functions in the case of submanifolds determined by
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equality constraints in the n-dimensional Euclidean space endowed with the induced Rie-
mannian metric and the minimization problem of sectional curvature is formulated as a global
minimization one on a Stiefel manifolds.

The sectional curvature of an arbitrary point of the manifold is not a function on the man-
ifold, but it is a continuous function on the two-dimensional vector subspaces of the given
tangent space. It follows that the sectional curvatures on a compact subset of the manifold
are bounded.
Some open questions are as follows:

• characterization of the Stiefel manifolds based on sectional curvatures;
• analysis of special equality constraints based on sectional curvatures (e.g., Theorem 7);
• solution of the minimization problem of sectional curvatures on special submanifolds;
• development of methods for solving the minimization problem of sectional curvatures on

submanifolds;
• generalization of Schur theorem.
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